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Abstract 

This paper describes machine vision algorithms that 
enable precision guidance and hazard avoidance during 
small body exploration through onboard visual feature 
tracking and landmark recognition. These algorithms 
provide estimates of spacecrafr relative motion and 
absolute position used to guide the spacecrafr during 
autonomous landing and exploration. They also enable 
hazard avoidance by providing estimates of 3-0  surface 
topography through processing of monocular image 
streams. This form of onboard autonomy is a critical 
enabling technology for multiple future missions 
including Comet Nucleus Sample Return, Large Asteroid 
Sample Return, Titan Organics and Europa Lander. 

1 Introduction 

Autonomous spacecraft systems have the potential to 
reduce costs while enhancing existing systems and 
enabling new capabilities for future deep space missions. 
For example, exploration of comets, asteroids and  moons 
of outer planets will  benefit tremendously from on-board 
systems that autonomously and accurately determine 
spacecraft position relative to a proximal  small  body. 
With  such a system, complex trajectories can  be  followed 
safely and accurately in the  dynamic  small  body 
environment. This capability will enable precision 
guidance to scientifically interesting targets, hazard 
avoidance, autonomous landing, and sample return with 
little or no  human interaction. 
Design  of  an autonomous navigation  system  should 
balance positional accuracy against the  typical constraints 
in spacecraft design of power,  mass,  volume,  and 
complexity. Cameras are proven spacecraft sensors; most 
spacecraft carry cameras for scientific imaging or optical 
navigation. The low cost, low power, low  mass,  and 
proven flight record of cameras also make  them an 
attractive sensing solution for autonomous navigation. 
Camera images can be  processed by the flight computer 
to estimate spacecraft motion, body absolute position  and 
3-D surface topography. By integrating spacecraft 
cameras with on-board processing, an autonomous 

navigation sensing system can be  realized  with little or no 
addition to typical spacecraft systems. 
We are developing  machine  vision algorithms that take as 
input streams of images from a single nadir pointing 
camera  and output estimates of spacecraft relative motion, 
spacecraft body absolute position  and  imaged surface 
topography. These estimates can be passed directly to the 
spacecraft guidance, navigation, and control system for 
following  of  safe  and  precise trajectories. Motion  is 
computed from feature tracking followed by two-frame 
image-based  motion estimation. Given motion estimates, 
our algorithms reconstruct the 3-D topography of the 
imaged  terrain  using efficient motion stereo techniques. 
This topography  can  be  used to detect hazards; it can also 
be  used to build a 3-D  model  of  the  imaged surface. 
Given a 3-D  model, our algorithms determine the position 
of the spacecraft in a body relative frame by  matching 
landmarks extracted from an  image stream to those stored 
in the  3-D  model. 

2 Problem  Formulation 

During algorithm development, we have  placed  an 
emphasis on robustness to noise  and outliers, generality in 
terms of image surface characteristics and application 
domain, and algorithm efficiency. Before describing our 
algorithms, we  would like to expand on  the problems we 
are investigating and relate them to the state of  the art in 
machine  vision and autonomous spacecraft navigation. 

2.1 Visual Position Estimation 

Current missions require optical navigation for orbit 
determination and instrument pointing during close fly- 
bys of small  bodies  and  moons  of the outer planets. This 
is  implemented  by  ground-based image processing to 
extract centroids of small reference targets like asteroids 
and moons. For the  NEAR  mission, orbit determination 
around asteroid Eros will  use  manual designation of 
known  landmark features on the surface of the asteroid 
[8] Limited  automation was introduced in the  New 
Millennium DS-1 mission by implementing onboard 
centroiding of reference asteroids for autonomous 
navigation in small  body fly-bys [9]. Proposed missions 
to explore comets  and asteroids will  not  be able to rely  on 
such techniques, because safe, precise navigation will 



require accurate knowledge  of  complex surface 
topography and  because  the round-trip light time will  not 
allow this to be done on  the  ground. 
Although  some degree of autonomous, onboard  position 
estimation capability has been demonstrated, the feature 
tracking and landmark recognition capabilities required to 
enable safe small  body exploration do not exist. One 
method for visual  position estimation relies on tracking 
image features through a sequence of  images.  Image 
features are image pixels that  have a high probability of 
being  matched  between  two images taken  of the small 
body surface from similar, but  not  necessarily  the same, 
camera locations. By detecting and  then tracking image 
features through a sequence of images, the relative motion 
of  the spacecraft can be determined between frames [5]. 
This capability is  useful  for  maintaining continuous 
estimates of spacecraft position, but since it does not  give 
absolute position  with respect to a body  centered 
coordinate system, its usefulness  is  limited. 
Another  method for visual  position  estimation is 
landmark recognition. A landmark is a 3-D  position on 
the surface of a body  whose appearance is stable across 
moderate changes in viewing direction and  illumination 
conditions (e.g., craters on  an asteroid [6] ) .  Landmarks 
are detected during 3-D modeling of the  body  and  stored 
in a database. During landmark  recognition,  landmarks 
detected in  an  image are matched to landmarks in the 
database. Since the 3-D position  of landmarks are known, 
recognizing a few landmarks in a single image is 
sufficient for determining the absolute position of the 
spacecraft relative to the body centered coordinate 
system. Landmark recognition is more  time consuming 
than feature tracking, however, these two  methods  of 
position estimation are complimentary. By combining the 
continuous updates of relative position  from feature 
tracking with the occasional updates of absolute position 
from landmark recognition, continuous estimates of 
spacecraft position in absolute body centered coordinates 
can  be obtained. 

2.2 Motion Stereo Vision 

Stereo imaging  has  been studied extensively, and  well- 
known techniques for reconstructing dense surfaces from 
stereo images exist [12]. Traditional stereo imaging  (i.e., 
two or more rigidly attached cameras) cannot be applied 
directly to the small body exploration problem, except 
near to the surface, because at high altitude the camera 
baseline  required for structure recovery is too large for 
typical spacecraft structures. However,  using  spacecraft 
motion estimates and stereo vision  techniques,  it is 
possible to generate dense topographic maps of a small 
body surface from monocular image streams. This 
technique, called motion stereo, has  the advantage of 
being applicable at any altitude above the  small  body 
surface. However, it requires a more  complicated 

algorithm  than  typical  binocular stereo because the 
baseline  between images is variable and  must  be 
computed from navigation sensor inputs. 
Motion stereo is an important component of autonomous 
small  body exploration because it provides the 3-D 
structure needed for hazard detection and  landmark 
recognition. 

2.3 Hazard Avoidance 

Hazard detection is  the process where scene topography is 
analyzed to detect landing sites that are unsafe for the 
spacecraft. Hazards  can  be characterized as high-level 
(e.g., rocks, cliffs) or low-level  (e.g., local surface slope 
and roughness), High-level  hazards are detected by 
segmenting hazard from the  background  while low-level 
hazards are computed at each pixel  in an image.  High- 
level  hazard detection requires the definition of models 
for objects that  promote efficient hazard detection and 
accurate localization  of hazards. The challenge of  low- 
level  hazard  detection is deciding what combinations of 
low-level  hazards constitute a hazard for the spacecraft. 
Hazard avoidance combines path planning to avoid 
detected  hazards  with constraints on  fuel  and spacecraft 
control authority to generate trajectories that guide the 
spacecraft to a safe landing site. Currently we are 
focussing on  the  hazard detection problem. In the future 
we plan  to  use  our algorithms as a front end to a complete 
hazard detection and avoidance system for safe and 
autonomous  small  body  landing. 

3 Algorithms 

As shown  in Figure 1, we are developing a complete set 
of algorithms for  passive  image-based  small  body 
navigation  and  hazard detection. Currently we have 
algorithms for feature-based relative motion estimation, 
motion stereo vision, surface landmark-based absolute 
position estimation, and  terrain  map  hazard assessment. 
Below we describe these algorithms and present results 
generated from images  acquired  of a comet analog in a 
controlled laboratory setting. 

3.1 Motion Estimation 

We define spacecraft motion as the 6 degree-of-freedom 
(DoF) change in position  and attitude of the spacecraft. In 
the case of image-based  motion estimation, the  motion 
computed is the change in position  and attitude between 
image captures. Image-based motion estimation has a 
long  history in the machine vision literature, and  the 
algorithm we  use falls in the category of two-frame 
feature-based  motion estimation. Our algorithm works  by 
tracking multiple  image features between a pair of images 
from  which  the spacecraft motion  between  the images is 



computed. Figure 2 describes pictorially the processes 
that  occur during motion estimation. Below we give a 
brief  overview of our motion estimation algorithm 
because it is a basis for current work.  For  more details, 
please  see  our previous work [ 5 ] .  
The first step in two-frame motion  estimation is the 
extraction of features from the first image. Features are 
pixel locations and  the surrounding image intensity 
neighborhood (call this a feature window)  that  can  be 
tracked  well across multiple images that  may  under  go 
arbitrary, but small, changes in illumination or viewing 
direction. A qualitative definition of a good feature is a 
feature window  that  has  strong texture variations in all 
directions. Since the motion  between  images is small, the 
change in position of features from image to image will 
be small. After feature detection, the features detected in 
the first frame are located in the  second frame; this 
procedure is called feature tracking. 
Feature detection and tracking have been studied 
extensively and multiple proven algorithms exist. Since 
processing speed  is an important  design constraint for our 
application, we selected the efficient feature detection 
algorithm of Benedetti and Perona [I] and the standard 
Shi-Tomasi feature tracker [lo]. 
The motion  between two camera views  is described by a 
rigid  transformation (R, T )  where R encodes the  rotation 
between  views  and T encodes the  translation  between 
views.  Once features are tracked  between images, the 
motion  of  the camera can  be estimated by solving for the 
motion parameters that, when applied to  the  features in 
the first image, bring them close to the corresponding 
features in the second image. 
A fundamental shortcoming of  all  image-based  motion 
estimation algorithms is the inability to solve for  the 
magnitude of translational motion. Intuitively the  reason 
for this  is  that  the algorithms cannot differentiate between 
a very large object that  is far from the camera or a small 
object that  is close to the camera. Consequently,  the 
output of  motion estimation is a 5 DoF motion  composed 
of a unit  vector describing the direction of  heading  and 
the  rotation  matrix R between  views. As described in [5] 
laser altimetry can be  combined  with 5 DoF motion 
estimation  to compute the complete 6 DoF  motion of the 
spacecraft. Other alternatives are to use on-board inertial 
measurement sensors or radiometric tracking from earth. 
In our algorithm, motion estimation is a two-stage 
process. First  an initial estimate of the  motion  is 
computed  using a linear algorithm [7]. This algorithm  is 
applied multiple times using different sets of features to 
eliminate feature track outliers and determine a robust 
LMedS estimate of motion. The result  of this algorithm is 
then  used as input to a more accurate nonlinear algorithm 
that solves for the  motion parameters directly. Since an 
good  initial estimate is needed to initialize any  nonlinear 
feature-based motion estimation algorithm, this two-stage 
approach is  common [ 1 I]. Output from the  nonlinear 

Figure 1 Algorithm block diagram 

algorithm is the estimate of  the five motion parameters 
and their covariance. This is then  combined  with laser 
altimetry or  inertial  measurements to create a 6 DoF 
motion estimate. For  the lab imagery, the magnitude  of 
translation is acquired from reading the translation stage 
used to move  the camera during image stream acquisition. 
It should  be  noted  that  all  of  our algorithm use a 
CAHVOR camera model [3] to intrinsically calibrated the 
camera, so imaging nonlinearities due to radial distortion 
and optical center offset do not effect motion estimation 
or structure recovery. 
Once  motion  is computed, the 3-D position of the  tracked 
features can also be computed  using triangulation and  the 
motion  between  the images. In Section 0, we show how 
the 3-D position of many  tracked features can  be  used to 
reconstruct the surface topography, which can 
subsequently  be  used for hazard detection. 
On tests conducted  using  real  imagery  we achieved a 
motion  estimation rate of 4 Hz (on a 176  MHz RlOOOO 
processor) and  motion estimation errors of less than 1% 
of the distance traveled. Using Monte Carlo simulation, 
we have  shown  that  using  only  image-based  motion 
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Figure 2 Feature-based  motion  estimation. 

estimation, it is possible to obtain a 3.6 m landing error 
ellipse when starting from a know  position at an altitude 
of lo00 m. 

3.2 Motion Stereo 

Motion stereo is used to generate dense topographic  maps 
of the  imaged scene for use  in absolute position 
estimation and  hazard detection. First  image-based 
motion estimation as described above is  applied  to 
determine the spacecraft motion  between  two images. To 
obtain a large baseline (distance between  image 
acquisitions), features may be  tracked  through  multiple 
images.  When  the desired baseline is reached, the  motion 
is  computed  between  the images based  on  the feature 
tracks using  the algorithm described above. 
If pixel  matches  between images are guaranteed to lie 
along the same scan line then a 1-D search, instead of a 2- 
D search, can  be  used  to  find  pixel  matches  and a more 
efficient stereo matching algorithm can  be realized. 
However, if the sensor rotates or translates  out  of  the 
image  plane  between images then  pixel  matches  will  not 
lie along the scan lines of the images. In this case, image 
rectification is  used  to enforce the  scan line alignment. 

Image rectification creates two  new images where  pixel 
matches are guaranteed to lie along scan lines by creating 
two  perfect  virtual cameras that  “view”  the acquired 
images. The virtual cameras are created so that  they  have 
the same image  plane,  and  they are oriented and 
positioned  in  the  image plane so that corresponding rows 
in the  virtual cameras define the same plane in space. The 
image  plane  and baseline between  virtual cameras are 
chosen so that  the rectified images are as close to the 
original images as possible. Projecting the original image 
pixels into the corresponding virtual camera then creates 
each  rectified image. 
To reduce the effect of intensity biases in  pixel  matching 
due to changes in illumination, a Laplacian filter 
(modeled as a difference of gaussians) is applied to the 
rectified  images. This band  pass filter eliminates the  DC 
intensity  and  the  noisy  high frequency components of the 
images. 
Next,  matches at every pixel  with sufficient texture are 
found along scan lines of the rectified and filtered images 
using a sum  of absolute differences stereo matching 
algorithm [12]. This algorithm is highly  optimized  and 
has  been  applied to many  mobile robot navigation 
problems. Once the pixel matches are computed, the 
depth to each  pixel  is computing using  the  motion 
between images and triangulation. 
During  small  body exploration, the spacecraft will  make 
motions  that are beyond  the scope of our binocular stereo 
vision algorithms (e.g., large rotations, translations out  of 
the  image plane). However with a few modifications, we 
were able to make our binocular stereo visions 
algorithms,  work for motion stereo as well. The first 
change was to modify the rectification algorithm so that 
the  rectified  images  were cropped to contain  only the part 
of  the  image  that contains data projected from the original 
images.  With  this change it was  then  necessary to change 
the stereo matching code so that it could search in both 
directions along scan lines for the  best  matching  pixel. 
Although  seemingly  minor modifications, these changes 
allowed  us to increase the amount of surface 
reconstructed in each image  without increasing the 
running times of the algorithms. 
Figure 3 shows the stages in  the  motion stereo algorithm 
for a wide  baseline data set taken  of a comet analog. The 
motion  between  the images is 10’ about the  vertical axis 
and a translation of 25 cm. Using  this  motion,  the images 
are rectified, cropped  and filtered as described above. 
Finally, stereo matching  is  performed  and a dense depth 
map  is constructed. The entire process of rectification 
through stereo matching  took 4.5 seconds for 5 12x512 
images  on a 300Mhz Sparc Ultra 10 processor. The depth 
map displayed is color coded according to the  visible 
spectrum.  Red data is the closest to the sensor while 
magenta data is the farthest from the sensor. As the figure 
shows,  very detailed surface topography  can be generated 
using  motion stereo and the compute time is small  enough 



to make  motion stereo feasible during small  body 
exploration. 

3.3 Position Estimation 

Image-based absolute position estimation is process by 
which  the 6 DoF absolute position of the spacecraft 
relative to a proximal  small  body coordinate system is 
determined from camera imagery.  Absolute  position 
estimation has  two applications. Should the  spacecraft 
lose all  position  and attitude information due to an 
anomaly, it can  be  used to realign the spacecraft with  the 
small  body coordinate system. The other  more  common 
application is to use absolute position  estimation to null 
out dead reckoning errors from motion estimation during 
small  body exploration. 
We have  taken the landmark matching approach to image- 
based absolute position estimation. First, a 3-D database 
of the small  body landmarks is constructed from orbital 
imagery either automatically or on the  ground  with  human 
intervention. Next, during exploration, imagery  is 
acquired and landmarks are extracted automatically. 
These landmarks are then  matched to the 3-D landmark 
database and the position of the spacecraft in the small 
body frame is computed. 
For landmarks to be effective, they  must exhibit some 
invariance to illumination conditions and  viewing 
direction. The general appearance of asteroids is well 
known from the multiple images taken during asteroid 
fly-bys; asteroids are marked  with craters. In another 
paper [6] ,  we show that craters can  be  used as effective 
landmarks for asteroid absolute position  estimation. 
However, in the case of comets, we have no  high- 
resolution  imagery of the comet surface, so establishing a 
strong geometric model  for landmarks (e.g., craters are 
circular) is  not possible. For comets, a more  general 
landmark  model  must  be  used. There are three factors that 
indicate that surface shape should be  used directly to 
describe landmarks for comet absolute position 
estimation. First, comet surfaces are expected to be  rough 
on  all scales, which  makes surface shape very descriptive 
for  matching. Second, although  the appearance of a 
surface changes with illumination, the shape of  the 
surface is invariant to illumination conditions. Third, 
there exist shape representations that provide local 
descriptions of surface shape that are invariant  to surface 
position  and attitude. These three factors make shape an 
attractive basis for landmarks. Since motion stereo can be 
used to extract the shape of a surface from monocular 
image streams, it is feasible to  use a local shape 
representation to generate landmarks for comet absolute 
position estimation. Figure 4 through Figure 6 show  that 
surface shape works  well  for absolute position estimation. 
We use  the spin-image shape representation [4]. In this 
representation, surface shape is described by a dense 
collection of oriented points, 3-D points with surface 
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Figure 3 Motion stereo procedure. 

normal.  Using a single point  basis constructed from an 
oriented  point (point with surface normal), the  position of 
other  points on  the surface can  be described by two 
parameters. The accumulation  of these parameters for 
many points on the surface results in  an  image at each 
oriented point. These images, localized 2-D patterns 
describing the  local shape of the surface, are invariant to 
rigid  transformations.  Through correlation of images, 
point correspondences between  two surfaces can  be 
established in  much the same way that templates are 
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Figure 4 Aligning  a  surface  patch  to  a  3-D  model  for 
absolute  position  estimation. 

Table 1 Position  information  for  Figure 4. 
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Figure 5 Demonstration  of  illumination  invariant 
position  estimation. 

Table 2 Position  information for Figure 5 
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matched in 2-D computer vision. When  two surfaces have 
many  point correspondences, they  match.  From this 
surface match,  the absolute position  of  the spacecraft can 
be determined. 
Spin-images from corresponding points  on  two different 
views of the same object will  be similar, so spin-images 
can  be  used to establish point correspondences between 
surfaces. In  this application, we match a 3-D  model  of  the 
comet surface to a 3-D surface patch extracted from 
imagery  using  motion stereo. Briefly, the procedure is as 
follows; for more details consult [4]. In  the initial offline 
stage, the 3-D model of the comet surface is constructed 
from orbital imagery, stored as a polygonal  mesh,  and the 
spin-images at each vertex  in the mesh are generated. To 
initiate comet absolute position estimation, a sequence of 
images is acquires and the viewed surface patch  is 
reconstructed  using  motion stereo. Next, a subset of 
vertices is selected from  the surface patch  and  the  spin- 
images for these vertices are generated. The spin-images 
from the surface patch are then  compared to the  spin- 
images from the  model.  When  two spin-images are highly 
correlated, a point correspondence between  the surface 
patch  and  the 3-D comet model is established. Point 
correspondences are then  grouped  and outliers are 
eliminated using  geometric consistency. Groups of 
geometrically consistent correspondences are then  used to 
calculate a rigid transformation that aligns the surface 
patch  with  the comet model. Finally, the alignment of  the 
surfaces is  verified  and  refined  using a modified iterative 
closest point algorithm. Since the surface patch  is 
represented in the coordinate frame of the spacecraft, the 
transformation  that aligns the surfaces also describes the 
absolute position of the spacecraft in the coordinate 
system of  the comet. 
To verify our comet absolute position  estimation 
procedure we conducted three tests. As  shown in Figure 
4, the  first  test verifies the  ability to match a small surface 
patch to a complete comet model. First a sequence  of 
orbital images  was  taken of a comet analog in the lab  by 
placing  the comet analog on a turntable and rotating it in 
front of the camera. Features were  then  tracked  through 
these sequences and the 3-D positions of the features were 
computed. These features were connected into a triangular 
mesh  using a 2-D Delaunay triangulation of feature 
positions projected onto a cylinder defined by the  orbit of 
the camera. This mesh constitutes the 3-D comet model. 
Next, a different set of images from the same orbit was 
taken. Features were  tracked in these images and  the 
corresponding structure was computed. These features 
were  linked together into a triangular mesh  using a 
Delaunay triangulation of the feature image positions. 
This mesh constituted the surface patch. The surface 
patch was then synthetically perturbed to an  assumed 
position far from its correct location. Spin-images were 
then  used to align the surface patch to the  3-D  model  from 
this  assumed position. As  shown in Figure 4 the surface 
alignment is quite good. Table 1 gives a comparison of 

positions  and attitude, represented  by Euler fixed angles, 
in order to assess the performance of surface matching. 
The assumed  position is far from the true  position  with a 
RMS error in translation  of k17 .32  cm and a RMS error 
in attitude of SF 76.81".  However,  the absolute position 
after surface alignment is dramatically improved  with 
6 ~ 0 . 2 4  cm and a RMS error in attitude of SF 1.80". This 
result verifies  our approach to absolute position 
estimation. 
The next  test  verified the performance of shape-based 
position  estimation  under  variable illumination 
conditions. As  shown in Figure 5, the comet analog was 
placed in front of the camera and  imaged  under three 
different illumination directions. For each illumination 
direction a sequence of images  was  taken along a 
trajectory that  caused  the camera to rotate about a point 
on  the comet surface. This trajectory included rotation 
and  translation components and  was the same for each 
illumination direction. The top of Figure 5 shows the first 
and  last  images in the sequences for a top, right and  left 
illumination directions. Although the images are taken 
from  the same position, the appearance of  the images 
varies drastically due to the changes in  illumination 
condition  and subsequent shadowing. 
The depth  maps in the  middle of Figure 5 were  computed 
using  motion  stereo. The coverage of  the depth maps 
varies  based on illumination because you cannot 
reconstruct depth in  the  shadow regions due to the 
absence of texture. However, the depth values in the few 
regions  of overlap between depth maps  show  similar 
depth variations,  which demonstrates the surface shape 
can be reconstructed in a manner that is independent of 
illumination conditions. 
We matched  the right illuminated surface to the top 
illuminated surface and also matched  the  left illuminated 
surface to the top illuminated surface.  At the bottom of 
Figure 5 we show the aligned surfaces and  the initial and 
estimated  positions of the sensor. Initially the sensor is 
assumed to be far from its true position. After alignment, 
the sensor position  is  much closer to its true position. This 
is  shown qualitatively in Figure 5 (using a 2-D slice 
through XZ plane for clarity) and quantitatively in Table 
2. 
The final  test  verified  the performance of shape-based 
position  estimation  under  variable  viewing trajectories. 
As  shown in Figure 6, the comet analog was  placed close 
to the camera and three different sequences were taken. 
In the first sequence the camera was translated 0.25 cm 
and  rotated 0.5" about  the  vertical axis between each 
image. The second sequence was constructed by tilting 
the  camera 5' and  then acquiring a sequence with 0.25 cm 
translation  and 0.5' vertical rotation  between images. The 
final sequence was acquired in a similar fashion except 
with a tilt of 10". The top of Figure 6 shows the first and 
last images for each sequence. The depth maps in the 
middle  of Figure 6 were  computed  using  motion stereo. 



The tilting of the camera is obvious from the  orientation 
of  the depth maps. We matched separately the 5 tilted  and 
the 10 tilted depth maps  to  the 0 tilted depth map. The 2- 
D plot on  the  bottom  left  of Figure 6 shows the surfaces 
and sensor positions before alignment and the 2-D plot on 
the bottom right shows the sensor positions and surfaces 
after alignment. Although  no  ground  truth  position  is 
available, the precise surface alignment indicates that  the 
position estimation is correct. 
The timing for all 3 absolute position  estimation 
experiments including surface patch spin-image 
generation, spin-image matching  and  pose  estimation  was 
less than 15 s on a 176 MHz RlOOOO processor. The 
positional accuracies as well as the rapid  execution  times 
demonstrate that shape, in the  form  of spin-images, can  be 
used to generate effective view  and  illumination  invariant 
landmarks for comet absolute position estimation. 

3.4 Hazard Detection 

Hazard detection algorithms locate landing  hazards in 
imagery  while  hazard avoidance algorithms guide  the 
spacecraft away from hazards  once  they are detected. To 
date we have  only investigated the hazard  detection 
problem.  Hazard  detection depends on  the  mission 
scenario and the design of the  spacecraft.  As a baseline, 
we are using  the ST4/Champollion spacecraft and  mission 
scenario when designing our algorithms. In their 
scenario, regions of large slope and  rough  surfaces 
constitute hazards to the spacecraft. It  is expected that by 
eliminating regions using  these  low-level  hazards,  that  the 
high-level  hazards  such as crevasses and boulders will  be 
detected and avoided. We can compute surface slope and 
roughness using  the dense surfaces reconstructed  using 
motion stereo. By applying constraints on surface 
roughness and slope, we  can  find the areas in the surface 
being  imaged  that are free of hazards. 
We define surface slope at each  pixel  in a depth  map by 
fitting a plane to the surface data in a local area around 
the  pixel. The size of this area is set to  the  expected  size 
of  the lander footprint. The plane is fit using a standard 
least squares solution for plane fitting which  has a closed 
form solution [2]. Given  this  local  plane  the slope of the 
surface with respect to a specified approach direction can 
be  computed. By placing a maximum allowable slope 
constraint on this data, surface regions that are too oblique 
with respect to the landing direction are be eliminated. 
Surface roughness is defined as the  maximum absolute 
deviation from the best-fit plane of the surface data in a 
local area around a pixel. Once  again  this area is set to the 
expected footprint of  the  lander. This definition of 
roughness is appropriate because it will detect both  rocks 
and crevasses. By applying a maximum surface roughness 
constraint, flat regions that exhibit too much surface 
variation for safe landing are eliminated. 
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Figure 6 Demonstration of the  view-invariance of 
absolute  position  estimation. 

We can  measure  the surface slope and roughness using 
the dense surface reconstructed  using  motion  stereo. 
Constraints on maximum roughness and slope will  be 
used to detect parts of the scene to be avoided, and  given 
these constraints safe landing sites can  be determined. 
Two tests were conducted to assess the performance of 
hazard detection. In  the first test,  hazards  were detected 
from same set of images used  in Figure 6. In these 
images,  the camera was  tilted  between each sequence. 
Figure 7 shows an image for reference and  the 
reconstructed  terrain  maps, for each sequence. Below  the 
terrain  map are images that show the roughness hazards 
(1 cm), the slope hazards (60') and  the safe zones for 
landing. The safe zones for all three sequences roughly 
correspond to the  same places on  the surface of the comet 
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Figure 7 Demonstration of motion  stereo  based 
hazard  detection. 

analog showing that our hazard detection algorithms have 
some  view invariance. 
In  the second test, the  hazards  detected in a descent 
sequence were assessed. For descent imaging, the image 
epipoles lie in  the image, making  image rectification and 
subsequent stereo matching impossible. However, a 
coarse terrain  map  can be reconstructed from the 3-D 
position  of  tracked features by projecting the depth of the 
features back into the image. Using  this  terrain  map, 
hazards can  be assessed in descent imagery. 

slope hazards roughness 
fhlnr?k\ ha7arrla fhlncM 

Figure 8 Demonstration of hazard  detection  from 
descent  imagery. 

The top of Figure 8 shows the first and  last  image of a 
descent sequence. Below  that are shown the  tracks of the 
'/4 of the features used to generate  the  terrain  map.  Below 
the feature tracks are shown  the reconstructed terrain 
map,  the  map  of safe landing  zones,  the  map of roughness 
hazards ( 1  cm)  and the map of slope hazards (75"). The 
hole in the  terrain  map  and subsequent maps indicates the 
area in the  image  where depth cannot be  computed 
reliably  because  feature disparity is too small. Qualitative 
comparison of hazards to the  terrain  map shows that 
hazards  have  been correctly detected. This test shows that 
surface structure can be computed  from descent 
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sequences and that subsequently hazards can be  detected 
using  our algorithms. 

4 Conclusions 

The algorithms we have  presented are advancing the state 
of the art in vision-based  navigation  for  small  body 
exploration in many directions. First, an  integrated  set of 
algorithms for 6 degree of freedom motion  and  position 
estimation for comets and asteroids during descent and 
landing has  never  been developed. Second, these 
algorithms perform completely autonomously. These 
algorithms also provide techniques for dense surface 
reconstruction from monocular image streams that enable 
hazard avoidance and 3-D mapping for in-situ science. 
Finally, these algorithms are based  on a single camera; 
this  has positive implications in terms of power, cost and 
mass for any spacecraft utilizing these techniques. 
The primary  user  of  this technology will be small  body 
missions. A future small  body  mission  that can benefit 
greatly from our algorithms is Comet  Nucleus Sample 
Return (CNSR). A requirement of CNSR  is  precision 
guidance and landing with hazard avoidance to three pre- 
determined sites on a comet nucleus. Other relevant future 
small  body missions are Large  Asteroid Sample Return, 
Asteroid Tomography and  the Multi-Asteroid Trojans 
Flyby  missions. This technology is also applicable to 
hazard avoidance during landing for the Europa Lander 
mission  and 3-D surface mapping  by aerobots during the 
Titan Organics Explorer mission. 
Although we have developed many algorithms for  the 
small  body  navigation  problem, there is still significant 
work  to  be done. Currently we are working  on algorithms 
that tightly couple motion  and  position estimation so that 
high accuracy motion  and  position estimates can be 
obtained  for longer periods. Better  motion estimates will 
improve  the accuracy of surfaces generated from motion 
stereo and  will  ultimately  lead to more accurate hazard 
detection. Another area of  work  will  be to modify existing 
algorithms to generate denser depth estimates from 
descent imagery. This will provide us  with the data 
needed to match surfaces and consequently estimate 
absolute position from descent imagery.  Another area of 
improvement  will  be to extend our motion  and  motion 
stereo algorithms operate on  multiple image frames.  In 
the end, we hope to demonstrate our algorithms in a real- 
time hardware-in-the-loop test on  an  unmanned  aerial 
vehicle. 

Acknowledgements 

The research described in this paper was carried out at the 
Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with  the  National 

Aeronautics and Space Administration. We would like to 
thank Jean-Yves Bouguet, Peitro Perona,  Mark  Maimone 
and  Yalin  Xiong for discussions and assistance leading to 
the results presented in this paper. 

References 

[ l ]  A.  Benedetti  and  P.  Perona. “Real-time 2-D feature 
detection on a reconfigurable computer.” Proc. IEEE 
Con.  Computer Vision and Pattern Recognition, pp. 

[2] R. Duda and  P.  Hart. Pattern Classification and 
Scene Analysis. Wiley-Interscience, New York, 1973. 

[3] D.  Gennery. “Least-squares camera calibration 
including lens distortion and automatic editing of 
calibration points.”  In Calibration and Orientation of 
Cameras in Computer Vision, A Grun  and T. Huang, 
eds., Springer-Verlag, 1999. 

[4] A. E. Johnson  and M. Hebert. “Surface matching for 
object recognition in complex three-dimensional 
scenes.” Image and Vision Computing, vol.  16,  pp. 

[5] A. E. Johnson  and  L. H. Matthies. “Precise image- 
based  motion estimation for autonomous small body 
exploration.” Proc.  5th Int’l Symp. On Artficial 
Intelligence, Robotics and Automation in Space, pp. 
627-634, June  1999. 

[6] B. Leroy,  G. Medioni, A. Johnson and  L. Matthies. 
“Crater detection for autonomous landing on 
asteroids.” Proc. IEEE Workshop on Perception for 
Mobile Agents, CVPR 99, June 1999. 

[7] H.  Longuet-Higgins “A computer algorithm for 

586-593, 1998. 

635-651, 1998. 

reconstructing a scene from two  projections.” Nature, 
vol. 293, pp.  133-135, September 1981. 

81 J. Miller et al.  “Navigation analysis for Eros 
rendezvous  and orbital phases.” Journal 
Astronautical Sciences, vol. 43, no. 4, pp. 453-476, 
1995. 

91 J. Reidel, S. Bhaskaran, S. Synott, W. Bollman  and 
G. Null. “An autonomous optical navigation  and 
control  system for interplanetary exploration 
missions.” Proc. 2nd IAA Int? Con. on Low-Cost 
Planetary Missions, IAA-L-506,  1996. 

101 J. Shi  and C. Tomasi. “Good features to track.” Proc. 
IEEE  Con. Computer Vision and Pattern 
Recognition, pp. 593- 600, 1994. 

111 J. Weng, N. Ahuja  and T. Huang.  “Optimal  motion 
and structure estimation.” IEEE Pattern Analysis and 
Machine Intelligence, vol.  15, no. 9, pp. 864-884, 
1993. 

[ 121 Y.  Xiong  and  L. Matthies. “Error analysis of a real- 
time stereo system.” Proc. IEEE  Con. Computer 
Vision and Pattern Recognition, pp. 1087-93, 1997. 


